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ABSTRACT

In August 2016, the National Weather Service Office of Water Prediction (NWS/OWP) of the National

Oceanic and Atmospheric Administration (NOAA) implemented the operational National Water Model

(NWM) to simulate and forecast streamflow, soil moisture, and other model states throughout the contiguous

United States. Based on the architecture of the WRF-Hydro hydrologic model, the NWM does not currently

resolve channel infiltration, an important component of the water balance of the semiarid western United

States. Here, we demonstrate the benefit of implementing a conceptual channel infiltration function (from

the KINEROS2 semidistributed hydrologic model) into the WRF-Hydro model architecture, configured as

NWM v1.1. After calibration, the updated WRF-Hydro model exhibits reduced streamflow errors for the

Walnut Gulch Experimental Watershed (WGEW) and the Babocomari River in southeast Arizona. Model cal-

ibration was performed using NLDAS-2 atmospheric forcing, available from the NOAA National Centers for

Environmental Prediction (NCEP), paired with precipitation forcing from NLDAS-2, NCEP Stage IV, or local

gauge precipitation. Including channel infiltration within WRF-Hydro results in a physically realistic hydrologic

response in the WGEW, when the model is forced with high-resolution, gauge-based precipitation in lieu of a

national product. The value of accounting for channel loss is also demonstrated in theBabocomari basin, where the

drainage area is greater and the cumulative effect of channel infiltration ismore important.Accounting for channel

infiltration loss thus improves the streamflow behavior simulated by the calibrated model and reduces evapo-

transpiration bias when gauge precipitation is used as forcing. However, calibration also results in increased high

soilmoisture bias, which is likely due to underlying limitations of theNWMstructure and calibrationmethodology.

1. Introduction

From 1984 to 2013, flood events in the United States

cost the nation $7.95 billion per year and resulted in an

average of 85 fatalities per year (National Weather

Service 2014), making flooding one of the deadliest and

costliest hazards for the United States. Flash floods oc-

cur when atmospheric conditions are favorable for the

occurrence of sustained (often convective) heavy pre-

cipitation, where sufficient ascent and moisture are both

present (e.g., Doswell et al. 1996). Flash flood events are
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difficult to predict in semiarid environments, such as the

southwestern United States, due to the difficulty of

having good estimates of antecedent soil moisture, and

due to the relatively short durations and highly localized

character of extreme precipitation events. Initial land

surface soil moisture conditions can be highly uncertain

due to limited soil moisture observations, while elevated

terrain hampers accurate estimation of precipitation

using weather radar (e.g., Zamora et al. 2014). Therefore,

flash flood prediction in these semiarid domains is par-

ticularly challenging and is further complicated by the dry

antecedent conditions of ephemeral channel beds, re-

sulting in large transmission losses (Goodrich et al. 1997).

Previous efforts to improve the physical process repre-

sentation in hydrologic forecasts within these environ-

ments have focused on the implementation of spatially

distributed hydrologic models, making use of gridded

high-resolution precipitation data (e.g., Blöschl et al.

2008; Looper and Vieux 2012; Broxton et al. 2014;

Hardy et al. 2016; Reed et al. 2007; Gourley et al. 2017).

In the present study, the added value of accounting for

channel infiltration in a spatially distributed hydrologic

model is evaluated for two basins in the southwest

United States.

To ameliorate the uncertainties associated with hy-

drologic forecasts, and to provide longer forecast lead

times for flash flood events, the National Weather

Service (NWS) Office of Water Prediction (OWP),

of the National Oceanic and Atmospheric Administra-

tion (NOAA), recently implemented the operational

National Water Model (NWM), based on architecture

of theWeather Research and Forecasting (WRF)WRF-

Hydro hydrologicmodel (Gochis et al. 2015). TheNWM

is a continental-scale distributed hydrologic model that

produces streamflow forecasts for 2.7 million stream

reaches across the contiguous United States (CONUS)

based on observed and forecasted precipitation. For the

semiarid southwestern United States, the model is sub-

ject to significant errors (Dugger et al. 2017) and, ac-

cordingly, the present study focuses on improving the

performance of the WRF-Hydro model (configured as

NWM v1.1) for this region.

In the southwest United States, much of the stream-

flow that occurs in ephemeral channels is due to surface

runoff associated with convective rainfall occurring

during the North American monsoon season (NAM)

(e.g., Maddox et al. 1995; McCollum et al. 1995; Adams

and Comrie 1997). During the NAM, precipitation can

either be phase-locked to the high terrain or propagate

into the low deserts as squall lines or mesoscale con-

vective systems (MCSs; e.g., Pytlak et al. 2005; Bieda

et al. 2009; Finch and Johnson 2010; Newman and

Johnson 2012; Seastrand et al. 2015; Lahmers et al. 2016;

Luong et al. 2017), resulting in significant amounts of

precipitation and surface runoff.

Throughout southeastern Arizona, the groundwater

levels tend to be deep, so that the surface runoff that

flows through the channel network infiltrates into the

soil, where it becomes a source for groundwater re-

charge (e.g., Blasch et al. 2004). Goodrich et al. (2004)

note that the depth to groundwater in the U.S. De-

partment of Agriculture (USDA) Agricultural Research

Service (USDA-ARS) Walnut Gulch Experimental

Watershed (WGEW; Moran et al. 2008), a tributary to

the San Pedro River in southeast Arizona with no pe-

rennial channels, ranges from approximately 50 to 145m

in the lower and middle basin, respectively. However,

local recharge from channel infiltration can make up a

significant portion of the local water balance, as recharge

estimates (based on groundwatermodeling, surfacewater

balance measurements, and evaluation of deep ground-

water storage using microgravity measurements) suggest

that channel infiltration accounted for 15%–40% of

groundwater recharge in the San Pedro basin during

wetter than average monsoon seasons (Goodrich et al.

2003, 2004). Virtually all of the runoff generated in the

WGEW is the result of monsoon convective precipitation

(Goodrich et al. 1997; Stone et al. 2008).

As currently implemented, WRF-Hydro does not

permit water to exit the channel network once it enters a

channel from the terrain routing grid (Gochis et al.

2015). Consequently, the operational version of the

NWM does not account for channel infiltration losses.

Because of the importance of channel infiltration pro-

cesses in semiarid regions like the southwest, we modi-

fied the WRF-Hydro structure to include channel

infiltration (e.g., Goodrich et al. 2004). Specifically, we

used a scheme similar to the one implemented in the

KINEROS2 distributed watershed model (Goodrich

et al. 2012), which was originally developed for the

southwestern United States and has been widely used

for hydrologic forecasting in semiarid domains.KINEROS2

has been tested and used extensively (e.g., Goodrich et al.

2012; Yatheendradas et al. 2008) in the WGEW and

other basins in southern Arizona.

Previous work has attempted to quantify and estimate

the nature and magnitude of channel infiltration at

various scales. Lane (1983) used an ordinary differential

equation to approximate the rate of change in runoff

volume with channel flow distance; observed inflow–

outflow discharge from ephemeral reaches were then

used to compute equation coefficients via regression

analysis. Noorduijn et al. (2014) modeled infiltration from

an artificial channel using Philip’s equation, accounting for

both the gravity and pressure terms in the sorption equa-

tion, while Callegary et al. (2007) quantified the recharge
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potential of ephemeral channel reaches in the southwest

CONUS using field data. Redistribution of water across

the land surface caused by infiltrationmay also affect the

local water balance; Zampieri et al. (2012) showed,

using a modified version of the Community LandModel

(CLM), that parameterization of the redistribution of

water through infiltration out of the channel network

was needed for the model to reproduce Oklahoma

Mesonet soil moisture observations.

In addition to incorporating a representation of

channel infiltration, the present study investigates the

model calibration problem; this is important due to the

inherent uncertainty in the model parameter estimates

and their impact on the simulated hydrologic response

(e.g., Yatheendradas et al. 2008). For spatially distrib-

uted hydrologic models (potentially having tunable pa-

rameters at each grid point), calibration is complicated

by the high dimensionality of the model (e.g., Smith and

Gupta 2012). This problem can be ameliorated using

spatial regularization (Gupta et al. 2008, 2009; Samaniego

et al. 2010), wherein model parameters are associated

with a priori nonlinear functions of observed surface

data. Doing so results in a smaller number of hyper-

parameters (i.e., parameters controlling the degree of

modification to the actual model parameters through

transfer functions) that must be calibrated to ensure that

the original model parameters are physically consistent

with catchment properties (e.g., Gupta et al. 2008, 2009).

For example, Pokhrel et al. (2012) used a spatial regu-

larization approach to calibrate the NWS Hydrology

Laboratory Research Distributed Hydrological Model

(HL-RDHM), and Vergara et al. (2016) used spatial

climate and land data to derive a priori estimates of

routing parameters for the kinematic wave routing

model across the CONUS to be used for flash flood

forecasts. Advanced spatial regularization techniques

that have been proposed include the multiscale parame-

ter regionalization (MPR) method, which uses spatial

transfer functions to computemodel parameters based on

high-resolution spatial data that account for spatial het-

erogeneity across grid cells (e.g., Samaniego et al. 2010).

In this study, we followed the approach presented by

Pokhrel et al. (2012) and calibrated a select set of WRF-

Hydro parameters (determined by sensitivity analysis).

This methodology is consistent with the calibration

methodology developed for the NWM v1.1 by the

National Center for Atmospheric Research (NCAR).

We evaluate the combined impacts of accounting for

channel infiltration and parameter calibration on the

simulated hydrologic response of WRF-Hydro for the

WGEW and the Babocomari River basin, which are

both tributaries to the San Pedro River. This work was

focused primarily on the WGEW (149km2), where

relatively accurate precipitation forcing data are avail-

able from a network of 88 weighing rain gauges. The

same calibration approach was extended to the larger

Babocomari River basin, where the impacts of channel

infiltration are greater due to its large area, despite

precipitation forcing uncertainties. The NWM model

structure and datasets used are described in section 2 of

this paper, and the calibration approach is outlined in

section 3. Calibration results are presented in section 4.

Results from the model calibration and evaluation and

possible future changes to theNWMare further discussed

in section 5, and conclusions are included in section 6.

2. WRF-Hydro model and user modifications

a. NWM WRF-Hydro model structure
and configuration

WRF-Hydro (Gochis et al. 2015) is a parallelized

distributed hydrologic model that can either be forced

offline using prescribed atmospheric forcing variables,

or coupled to the Advanced Research version of the

WRF (WRF-ARW) atmospheric model (Skamarock

et al. 2008). A simplified schematic of WRF-Hydro is

shown in Fig. 1. Atmospheric forcing data needed to

execute WRF-Hydro offline include incoming short-

wave radiation, incoming longwave radiation, specific

humidity, air temperature, surface pressure, and near

surface wind (both u and y components). The NWM is a

particular configuration of WRF-Hydro, which uses the

Noah-MP land surface model (LSM; Niu et al. 2011) to

resolve vertical fluxes within the soil column and ex-

changes with the atmosphere. Noah-MP is configured

using gridded NWM soil parameters, which govern the

drainage of water through the soil column, with 1-km grid

resolution. NWM WRF-Hydro resolves horizontal sur-

face and subsurface fluxes on a 250-m grid resolution

routing grid (with 10-s and 60-min time steps, re-

spectively). Since the routing grid cells are 4 times smaller

than the Noah-MP grid cells, spatially varying quantities

on the 250-m routing grid are aggregated back to the 1-km

gridduringmodel time stepswhenNoah-MP is called (every

60min) and disaggregated back to the 250-m routing grid.

The subsurface flow module on the WRF-Hydro grid

computes changes to the water table in the 250-m soil

column (which is assumed to be 2m deep everywhere),

using Dupuit–Forcheimer assumptions. This assumes

that the hydraulic gradient is based on differences in the

groundwater table depth along the steepest gradient in

eight possible directions around a routing grid point

(Gochis et al. 2015). If subsurface flow causes a model

grid point to become saturated, exfiltration is computed

and this resultant water ponding is combined with
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infiltration excess and routed as surface runoff. Surface

flow is computed using diffusive wave routing based on

the steepest gradient around each grid point (Julien

et al. 1995; Ogden 1997). Details of the surface and

subsurface routing schemes of WRF-Hydro are dis-

cussed in detail in Gochis et al. (2015).

When surface flow reaches a grid cell that is desig-

nated as a channel, it is mapped to the vector channel

network and routed downstream (with a 5-min time

step). The NWM channel network is based on the Na-

tional Hydrography Dataset (NHD) Plus Version 2

(NHDPlusV2) (McKay et al. 2012). In the present study,we

added a channel infiltration parameter that is physically

representative of the channel bed conductivity (ms21)

(ChannK; Table 1). Flow in the channels is computed using

an iterative Muskingum–Cunge function for each reach.

FIG. 1. Illustration of the uncoupled WRF-Hydro hydrologic model structure. The Noah-

MP LSM and routing grid columns are shown at the top right. Baseflow from the bottom of

the Noah-MP LSM is passed to the baseflow bucket model (shown middle right), labeled as

unconfined aquifer storage.Water from the baseflow bucket model and surface runoff from the

terrain routing grid are both returned to the channel network shown at left. Channel infiltration

is a sink in the model structure (assumed to be deep groundwater recharge). The vertical cross

section of a trapezoidal channel used by theWRF-HydroMuskingum–Cunge routing scheme is

also shown at the bottom. The sides of the channel are assumed infinite. The channel widthw is

the BtmWdth parameter, and the channel side slope h/ws is the ChSlp parameter.
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This vector routing scheme is more computationally effi-

cient than other WRF-Hydro channel routing configura-

tions (e.g., 1Ddiffusivewave routing) and has the capability

to be mapped to specific rivers and reaches that may be of

interest to emergencymanagers and stakeholders; however,

it cannot resolve backwater flow (Gochis et al. 2015).

Deep baseflow (below the soil column) in WRF-

Hydro is computed using a conceptual exponential

bucket model. All water that drains out of the Noah-MP

LSM 2-m soil column is mapped to a groundwater

catchment, which corresponds to the NHDPlusV2 chan-

nel reach/catchment topology. There are a few relatively

small reaches in the NWM domain that are not mapped

directly to an NHD bucket. Water from this conceptual

groundwater bucket is gradually returned to the channel

reach that directly corresponds to its underlying catch-

ment, where the rate of discharge is controlled by three

tuning parameters in an exponential equation.

WRF-Hydro has parameters that may be specified

through input tables and grids, and these parameters may

be adjusted or calibrated depending on the study region

andhydrologic behavior of interest. PriorityNoah-MPand

WRF-Hydro parameters, thatwere selected by theNCAR

to regionally calibrate NWM version 1.1 (Dugger et al.

2017), are shown in Table 1. For all modeling described

herein, model code and a priori parameters are based on

NWM v1.1, except where modifications are noted. A

priori Noah-MP soil parameter values in WRF-Hydro

are based on Rawls et al. (1982), from the STATSGO2

soil texture dataset (available at http://websoilsurvey.

nrcs.usda.gov/). Channel parameters, which correspond

to individual reaches based on stream order and other

channel characteristics (with the exception of the channel

infiltration parameter; see next section) and that were

evaluated after the first round of calibration in the

WGEW (see section 3a), are shown in Table 1.

b. Model domains

In the present study, the effects of modeled channel

infiltration are evaluated for the WGEW and the

Babocomari River basin. Figure 2 shows the elevation

grid for the 250-m NWM routing grid for the entire

TABLE 1. NWM parameters considered for calibration by NCAR (Dugger et al. 2017) and channel parameters considered as part of the

present study. Parameters are organized based on areas of the WRF-Hydro model structure.

Name Description Units

Soil parameters

BEXP Pore size distribution index Dimensionless

SMCMAX Saturation soil moisture content (i.e., porosity) Volumetric fraction

DKSAT Saturated hydraulic conductivity m s21

Runoff parameters

REFKDT Surface runoff parameter; REFKDT is a tunable parameter that significantly impacts

surface infiltration and hence the partitioning of total runoff into surface and

subsurface runoff. Increasing REFKDT decreases surface runoff.

Unitless

SLOPE Linear scaling of ‘‘openness’’ of bottom drainage boundary 0–1

RETDEPRTFAC Multiplier on retention depth limit Unitless

LKSATFAC Multiplier on lateral hydraulic conductivity (controls anisotropy between vertical and

lateral conductivity)

Unitless

Groundwater parameters

Zmax Maximum groundwater bucket depth mm

Expon Exponent controlling rate of bucket drainage as a function of depth Dimensionless

Vegetation parameters

CWPVT Canopy wind parameter for canopy wind profile formulation m21

VCMX25 Maximum carboxylation at 258C mmol m22 s21

MP Slope of Ball–Berry conductance relationship Unitless

HVT Canopy top height m

Snow parameters

MFSNO Melt factor for snow depletion curve; larger value yields a smaller snow cover fraction

for the same snow height

Dimensionless

Channel parameters

ChannK Channel bed conductivity (for channel infiltration function) m s21

BtmWdth Bottom width of channel m

ChSlp Channel side slope Unitless

N Manning’s N s m21/3
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San Pedro basin; however, the simulations performed

in this study use cutout grids for the Babocomari basin

and WGEW.

For all calibration simulations, atmospheric forcing is

derived from NLDAS-2 atmospheric variables that are

regridded to the model domains; however, the model is

calibrated with both regridded 1/88 NLDAS-2 pre-

cipitation andNCEP 4-km Stage IV precipitation, which

is based on WSR-88D radar and gauge precipitation

(Lin and Mitchell 2005). To reduce the influence of

possible forcing uncertainty and bias, WRF-Hydro in

WGEW was forced with gauge-based precipitation

(88 gauges in the 149 km2 watershed area) interpolated

to the WGEW-domain model grid. WGEW is useful

for analyzing the performance ofWRF-Hydro because

it includes 20 soil moisture measurement sites, two

AmeriFlux (Department of Energy 2018) flux towers,

and subwatersheds with supercritical flumes for mea-

suring runoff (Fig. 3).

Figure 4 demonstrates the profound role of channel

infiltration in the lowermost reach of the WGEW, where

streamflowduring two runoff events from the twoupstream

flumes that come together to form a single channel (runoff

gauges 2 and 7), is highly attenuated by the time it reaches

runoff flume 1, situated 7 km downstream, defining the

basin outlet. Model topography and two initial soil pa-

rameters in WGEW, which are a function of soil type,

are shown in Fig. 3. This figure shows that soil saturated

hydraulic conductivity based on NWM v1.1 grids in

WGEW is relatively homogeneous, as it is derived from

STATSGO2 soil texture class which is homogenous in

this domain. Higher-resolution SSURGO soil texture

data (available at https://websoilsurvey.nrcs.usda.gov/)

in WGEW shows considerably more variability, which

is considered in our discussion (section 5); however,

this study uses the NWM STATSGO2 grids to stay

consistent with the NWM v1.1 configuration. DKSAT,

according to the NWM a priori parameters, is constant

at 3.37 3 1026m s21 everywhere in WGEW, except in

the extreme upper basin. Vegetation across WGEW

includes primarily desert shrubs and grasslands; how-

ever, the town of Tombstone, Arizona, is partially ur-

banized. WGEW has oak forests in its extreme upper

reaches.

The Babocomari River basin characteristics are shown

in Fig. 5. This basin has a larger drainage area, and much

of the headwaters are at high elevations. Like WGEW,

NWM STATSGO soil characteristics likely underesti-

mate the variability of the soils, per the SSURGO data-

set. TheBabocomari basin has a flux tower and three soil

moisture observation sites with reliable data through the

calibration period (Fig. 5), so model states at these sites

are also evaluated.

c. Baseflow bucket parameter modifications

The current WRF-Hydro conceptual bucket model,

which assumes one-way direct connection between atten-

uated baseflow from a groundwater basin and the over-

laying channel, provides a poor representation of baseflow

in event-driven, ephemeral channels in semiarid environ-

ments. Depth to groundwater is often substantial in the

southwest CONUS, such that surface water–groundwater

processes can become decoupled. In addition, water from

channels often infiltrates to recharge the local aquifer

(e.g., Blasch et al. 2004), and this source of recharge is

currently not represented in the NWM.

To prevent unrealistic simulations of baseflow in the

channel network, we disabled the baseflow bucket

model everywhere in the model domain by setting the

Noah-MP bottom drainage scaling (SLOPE) parameter

to zero, imposing a no-flow condition at the bottom of

the Noah-MPLSM in both theWGEW (Fig. 3b) and the

Babocomari basin (Fig. 5b). This assumption is consis-

tent with NWM calibrated parameters for this region,

where a small SLOPE parameter effectively eliminates

deep baseflow to the channel. Neither WGEW nor the

Babocomari basins contain perennial channels fed from

deep groundwater, and there are no perennial channels

shown in either basin per the NHDPlusV2 dataset at-

tributes, so they are not good candidates for applying the

conceptual baseflow bucket module in its current form.

d. Channel infiltration loss function

The WRF-Hydro channel routing scheme assumes a

trapezoidal channel geometry, and the length and slope

of specific reaches is specified in the NHDPlusV2

FIG. 2. The WRF-Hydro NWM 250-m routing grid (displayed as

elevation) for the San Pedro River basin is shown. The Walnut

Gulch and Babocomari River calibration basins are in the hatched

areas. Spatial reference information for the San Pedro routing grid

is shown in the top right corner of the figure.

696 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

https://websoilsurvey.nrcs.usda.gov/


dataset. A cross section of a WRF-Hydro channel is

shown in Fig. 1. If the volume of water in a reach is

known, the height of the water h (m) and the wetted

perimeter p (m) can be calculated by the following ar-

gument. First, the cross-sectional area a (m2) of the water

may be computed by dividing the channel volume by the

length of the reach, assuming a constant height along the

entire length of the reach. Based on the trapezoidal shape

assumption, cross-sectional area is equivalent to

a5 h(w1w
s
) . (1)

We can compute ws (m) as a function of the riverbank

slope s (h/ws in Fig. 1) and water height. Note that s is

equivalent to the WRF-Hydro ChSlp parameter. This

may be written as

a5h

�
w1

h

s

�
5wh1

1

s
h2; w

s
5

h

s
. (2)

Since area can be derived for a channel volume, for a

given bottom width w and bank slope s, Eq. (2) can be

solved for h. It is possible to derive the wetted perimeter

p from h using

p5w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 1

�
h

s

�2
s

5w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

s2
(s2 1 1) .

r
(3)

Due to the effects of uneven channel bed topography,

wetted perimeter will be reduced during periods of low

flow, as water will only flow within the lowest portions of

an irregular channel. To account for this tendency in

FIG. 3. (a) WGEW elevation, (b) modified bottom drainage scaling factor (Noah-MP SLOPE parameter),

(c) saturated soil conductivity (Noah-MPDKSAT parameter), and (d) saturated soil conductivity (from layer-averaged

2014 SSURGO data) are plotted. WGEW soil moisture and flux tower sites are also shown in (a). WGEW gauges

plotted refer to runoff gauges. All gridded data are based on the NWM in the southwest CONUS, and SSURGO

conductivity is derived by the USGS (https://water.usgs.gov/GIS/metadata/usgswrd/XML/ds866_ssurgo_variables.xml).
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trapezoidal channels, p is reduced during periods of low

flow using a conceptual model similar to what is used

in KINEROS2 (Woolhiser et al. 1990). KINEROS2

computes a corrected wetted perimeter pe for a channel

using the function

p
e
5min

�
h

b
ffiffiffiffi
w

p , 1

�
p , (4)

where b (unitless) is set to a constant value of 0.15.

Channel infiltration I (m3 s21) may then be derived as

FIG. 4. (left) Observed and (right) accumulated streamflow atWGEW runoff gauges 2 and 7 (combined, red) and

WGEW runoff gauge 1 (outlet, black) for two flow events are depicted on the y axis of each panel. The shaded

spatial plots of WGEW depict storm total precipitation for each event (mm).

FIG. 5. (a) Babocomari basin elevation, (b) modified bottom drainage scaling factor (Noah-MP SLOPE pa-

rameter), (c) saturated soil conductivity (Noah-MP DKSAT parameter), and (d) saturated soil conductivity (from

layer-averaged 2014 SSURGOdata) are plotted. NOAAHMT soil moisture and the AmeriFlux flux tower site are

also shown in (a). USGS gauges plotted refer to runoff gauges. All gridded data are based on the NWM in the

southwest CONUS, and SSURGO conductivity is derived by the USGS (https://water.usgs.gov/GIS/metadata/

usgswrd/XML/ds866_ssurgo_variables.xml).
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I5 klp
e
. (5)

In this function, k (ms21) is the saturated conductivity of

the channel bed (the ChannK parameter), and l (m) is

the length of a channel reach. Channel infiltration is

accounted for in theMuskingum–Cunge routing scheme

of WRF-Hydro, as an added sink in the iterative calcu-

lation, by deriving the effective flow height and wetted

perimeter for a channel reach volume and assigning a

saturated conductivity for the channel bed below. We

assume b to be constant, while the saturated conduc-

tivity of the channel bed (ChannK) is initially set

equivalent to the saturated soil conductivity of

Noah-MP (DKSAT). Water that infiltrates out of the

channels is assumed to contribute to deep groundwater

recharge and is therefore removed from the model.

During calibration, initial ChannK is adjusted by a scalar

multiplier, a simple form of spatial regularization (e.g.,

Pokhrel et al. 2012).

3. WRF-Hydro calibration intervals

We calibrated the NWM with three different config-

urations of increasing complexity to evaluate: 1) the

importance of channel parameters following the addi-

tion of the channel infiltration function, 2) the added

value of the channel infiltration function in an ephem-

eral catchment with a relatively simple hydrologic

response (i.e., WGEW), and 3) the calibrated model

performance with two nationally available forcing

products (Table 2).

Optimization of daily streamflow was performed us-

ing the dynamically dimensioned search (DDS) algo-

rithm (Tolson and Shoemaker 2007), which is capable of

converging to near optimal parameter sets with fewer

(approximately 100–500) iterations (e.g., Lespinas et al.

2017) than the widely used Shuffled Complex Evolution

function (e.g., Duan et al. 1992) that can require;10 000

iterations to converge to an optimal solution. This

makes DDS better suited for calibration of computa-

tionally expensive, distributed, physically based, models

like the WRF-Hydro model. For all calibration exer-

cises, except the first (section 3a), we use 500 iterations

of DDS with the updated NWM v1.1 utilizing channel

infiltration. Lespinas et al. (2017) show that improve-

ments to model skill are greatest between 100 and 500

DDS iterations and that less value is added beyond 500.

As the first exercise (section 3a) is simply intended to

bring the NWM parameters to an acceptable state so

that channel parameters can be evaluated, we only

performed 250 iterations for this step. For all calibration

simulations, NWM v1.1 with channel infiltration is

calibrated to daily streamflow to stay consistent with
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NWM v1.1 calibration methods, and we consider hourly

streamflow when evaluating the NWM in WGEW since

most streamflow events occur at the hourly time scale.

All of the calibrations reported here are based on

optimization of the Kling–Gupta efficiency (KGE)

performance metric (Gupta et al. 2009), which equally

weights correlation, water balance, and variance errors.

Like the Nash–Sutcliffe efficiency (NSE), KGE is opti-

mal when equal to 1, and negative values of KGE are

considered to have low skill. KGE is optimal when the

Euclidian distance from an ideal point for the ratio of

modeled to observed standard deviation a, ratio of

modeled to observedmean b, and correlation coefficient

r are minimized (Gupta et al. 2009):

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 1)2 1 (a2 1)2 1 (b2 1)2

q
. (6)

For all basins, initial model states were derived by

executing WRF-Hydro with default parameters with

their calibration precipitation forcing (WGEW-gauge,

Stage IV, or NLDAS-2) for an 8-yr spinup period during

water years (WY) 2007–15. Themodel state at the end of

this period was used as the initial ‘‘warm’’ state for cal-

ibration, consistent with the practices of the NCAR

WRF-Hydro NWM development team. This ensures a

long-term model spinup of multiple years to allow state

variables to reach equilibrium. Then for each calibration

iteration, model parameters were given one year of

additional spinup to equilibrate before the calibration

and evaluation periods (described in detail below).

a. Stage 1: Channel parameter sensitivity

To evaluate the sensitivity of the channel routing pa-

rameters, WRF-Hydro was first calibrated to eliminate

water balance errors using WGEW gauge precipitation

forcing. This step was only performed for the WGEW

basin. As bias is a component of KGE, this objective

function permitted us to reduce water balance errors

and simulate an otherwise realistic hydrologic response

(since correlation and variance errors are also accounted

for). To select parameters for this calibration, sensitivity

analysis on daily KGE was first performed on the

updated NWM, using linear adjustments applied to de-

fault prior estimates (e.g., DKSAT shown in Fig. 3c) of

the model parameters (Table 1). Selected calibration

parameters included ChannK (channel conductivity),

DKSAT (soil conductivity), REFKDT (infiltration

scaling), and SMCMAX (soil porosity). These pa-

rameters were chosen because sensitivity analysis re-

vealed that they had the greatest impact on model

KGE. ChannK, SMCMAX, and DKSAT were com-

puted by multiplying initial NWM parameters by a

constant, and REFKDT was assumed constant in the

whole model domain. DKSAT was adjusted by an

addition constant (before being adjusted by a multi-

plicative constant).

TABLE 3. Model hourly correlation coefficient with varying values of ChSlp (labeled as s),N (labeled as n), and BtmWdth (labeled as w).

Model parameters are adjusted by either dividing or multiplying a priori N, ChSlp, or BtmWdth parameters by a constant.

ChSlp (s) s 5 s/5 s 5 s/2.5 Control s 5 s 3 2.5 s 5 s 3 5

0.1966 0.3838 0.6349 0.6463 0.5867

Manning’s N (n) n 5 n/2 n 5 n/1.5 Control n 5 n 3 1.5 n 5 n 3 2

0.2242 0.4175 0.6349 0.6784 0.5146

BtmWdth (w) w 5 w 2 4 w 5 w 2 2 Control w 5 w 1 2 w 5 w 1 4

0.5830 0.6241 0.6349 0.6826 0.6974

TABLE 4. Final parameter adjustment constants for each WRF-Hydro NWM calibration. Note that REFKDT is constant throughout

themodel domain, so the values for this parameter in the table are directly equivalent to theNWMparameter. As in Table 2, ‘‘m’’ and ‘‘a’’

indicate multiplication or addition adjustment constants, respectively.

Basin/gauge Forcing

SMCMAX

(m) DKSAT (a)

DKSAT

(m)

REFKDT

(const)

ChannK

(m)

ChSlp

(m)

Walnut Gulch WGEW gauge 1.006 22.30 3 1027 1.031 3.692 0.387 1.499

Walnut Gulch (without loss) WGEW gauge 1.109 5.30 3 1027 1.014 2.785 — 1.419

Walnut Gulch Stage IV 0.940 4.49 3 1027 1.643 1.198 0.621 0.695

Walnut Gulch (without loss) Stage IV 1.075 4.09 3 1027 1.539 1.551 — 1.154

Babocomari River Stage IV 1.004 26.19 3 1027 0.940 1.491 0.998 0.252

Babocomari River (without loss) Stage IV 0.877 9.09 3 1027 0.707 3.998 — 0.984

Walnut Gulch NLDAS-2 1.028 1.33 3 1027 0.526 1.994 0.988 1.488

Walnut Gulch (without loss) NLDAS-2 1.045 2.15 3 1027 0.965 1.196 — 1.499

Babocomari River NLDAS-2 0.842 8.28 3 1027 0.501 1.067 0.348 0.138

Babocomari River (without loss) NLDAS-2 0.800 21.95 3 1027 0.697 2.277 — 0.593
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For this first step of calibration, the Noah-MP time

step was reduced from 60min (the standard for the op-

erational NWM) to 15min, so that the model produced

outputs, including streamflow, at 15-min temporal

resolution. This permitted us to critically analyze the

sensitivity of the channel infiltration function at fine

resolution (not shown). This calibration improved

WGEW model KGE (with daily temporal resolution)

from 21.57 to 0.80 for WY2009–11 (the calibration

period; spinup period, WY2008) by reducing water

balance errors that caused excessive runoff and low ET

biases (not shown).

Following initial calibration, a simple one-at-a-time

parameter sensitivity analysis was performed on the

WRF-Hydro channel parameters, including BtmWdth

(channel width), ChSlp (outer channel slope), and N

(Manning’s N; see Table 1). For each parameter, initial

parameter values in the WGEW domain were adjusted

by either addition or multiplication to the initial pa-

rameter with a constant. A priori parameter values were

FIG. 6. Example of control (blue), calibrated (red), and calibrated with channel loss (orange) NWM streamflow

for Walnut Gulch runoff gauge 1, where the model is forced with gauge precipitation. (top left) Accumulated

streamflow and (top right) model skill scores. Annual daily streamflow for (middle left)WY2011 and (middle right)

WY2014. Hourly streamflow for (bottom left) 1–15 Sep 2012 and (bottom right) 16–31 Jul 2013.
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assigned by the NCAR NWM WRF-Hydro develop-

ment team. This exercise permitted evaluation of the

model hydrologic response to perturbations of the

channel routing parameters. Themain evaluationmetric

of interest for this analysis was the hourly correlation

coefficient because its accuracy is a proxy for errors in

the timing of streamflow events (e.g., Gupta et al. 2009).

This analysis showed that ChSlp and N, which affect the

transit time of streamflow, impact the model correlation

coefficient (Table 3), with correlation coefficients in-

creasing when these parameters were multiplied by 2.5

and 1.5, respectively. However, in further analyses, we

chose to only vary ChSlp, while keeping Manning’s

channel roughnessN constant.We could have also varied

this latter parameter, as both parameters (ChSlp and N)

affect the model correlation coefficient (Table 3). How-

ever, as both parameters have a similar impact (though,

not necessarily identical) on NWM streamflow transit

time, it was decided that including an additional param-

eter to calibrate would have been somewhat redundant.

b. Stage 2: Evaluation of channel infiltration
in WGEW

To demonstrate the added value of channel in-

filtration, NWM WRF-Hydro was recalibrated for

WGEW with the same parameters used for Stage 1 of

calibration (see last section) but with the addition of the

ChSlp parameter, for WY2011–13 (WY2010 for spinup)

with channel infiltration either active or disabled. The

change to the calibration period from Stage 1 was in-

tended to include both wet and dry years in the cali-

bration. The ChannK parameter multiplication constant

was constrained between 0.0 and 1.0, based on the as-

sumption that saturated conductivity (DKSAT) sets an

upper limit for channel infiltration. This implicitly as-

sumes that the channel bed properties for a region will

tend to be consistent with local soil characteristics, with

soil conductivity being maximized when saturated. The

Noah-MP time step for this calibration was set to 60min,

consistent with the operational NWM v1.1.

All adjustment constants for selected parameters and

their ranges are shown in Table 2. For parameters

where a priori values are adjusted by multiplication or

addition constants (e.g., DKSAT), the ranges of the

adjustment constants are shown. Note that these ad-

justment factors are not the parameters themselves. For

example, if SMCMAX has an adjustment factor of 0.8,

the a priori values of SMCMAXwill bemultiplied by 0.8

everywhere to compute the new parameters, thus pre-

serving the spatial patterns of the parameters as they

are calibrated. REFKDT is left constant through-

out the model domain, so the possible ranges of the

actual values for this parameter are shown in Table 2.

The final parameter adjustment factors and calibration

TABLE 5. NWM WRF-Hydro daily streamflow skill scores after calibration, including: correlation coefficient (COR), coefficient of

variation (CV) percent bias, percent bias, and KGE. Skill scores with an asterisk symbol (*) indicate where calibration reduced the model

skill. The evaluation period encompasses all years in the WY2009–2016 period outside of the specified calibration period. Note that

calibration period years indicate water years for that period.

Basin/gauge Forcing precipitation Calibration years COR CV percent bias Percent bias KGE

Calibration period

Walnut Gulch WGEW gauge 2011–13 0.9442 20.9797 20.0994 0.9431

Walnut Gulch (without loss) WGEW gauge 2011–13 0.9420 215.0190 9.8052 0.8679

Walnut Gulch Stage IV 2011–13 0.9436 2.0405 20.0043 0.9400

Walnut Gulch (without loss) Stage IV 2011–13 0.9392 26.8931 3.1255 0.9209

Babocomari River Stage IV 2009–11 0.7661 23.6493 2.6121 0.7643

Babocomari River (without loss) Stage IV 2009–11 0.6527* 245.8413* 67.6339 0.2342

Walnut Gulch NLDAS-2 2011–13 0.6081 24.9914 0.3365 0.6053

Walnut Gulch (without loss) NLDAS-2 2011–13 0.6012 225.8172* 11.7025 0.5504

Babocomari River NLDAS-2 2009–11 0.4239 211.0953 7.3702 0.4174

Babocomari River (without loss) NLDAS-2 2009–11 0.4221 238.0215* 18.2809 0.3377

Evaluation period

Walnut Gulch WGEW gauge 2011–13 0.8626 235.1647 7.6912 0.6596

Walnut Gulch (without loss) WGEW gauge 2011–13 0.8385 248.8372* 40.8510 0.4794

Walnut Gulch Stage IV 2011–13 0.5248 238.2333 18.7505 0.4238

Walnut Gulch (without loss) Stage IV 2011–13 0.4864 250.8070* 22.4752 0.3128

Babocomari River Stage IV 2009–11 0.2918* 16.6644* 88.2720 20.6469

Babocomari River (without loss) Stage IV 2009–11 0.2787* 248.4689* 265.3276 21.8878

Walnut Gulch NLDAS-2 2011–13 0.4708 26.9326 59.8780 0.0637

Walnut Gulch (without loss) NLDAS-2 2011–13 0.4666 234.9931 119.4619 20.3761

Babocomari River NLDAS-2 2009–11 0.2706 40.3256* 324.8557 24.9753

Babocomari River (without loss) NLDAS-2 2009–11 0.2366 12.7921 421.1274 25.4893
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configuration for these simulations are shown in Table 4.

As noted above, 500 iterations of DDS were used, and

daily streamflow KGE was the objective function. To

evaluate whether the calibration of the NWM improved

the entire physical model state and not just simulated

streamflow, soil moisture and evapotranspiration (ET)

fluxes within WGEW were evaluated after calibration,

with and without channel infiltration.

c. Stage 3: Calibration with Stage IV and NLDAS-2
precipitation

To demonstrate the potential application of the afore-

mentioned channel infiltration function and calibration

methods in the operational NWM, WRF-Hydro was also

calibrated using NLDAS-2 and NCEP Stage IV precipita-

tion as forcing instead. Calibration periods were 3 years

long, with one extra prior year for spinup (i.e., WY2011–13

with spinupWY2010 andWY2009–11with spinupWY2008

for the WGEW and Babocomari basin, respectively) and

selected to include both wet and dry years for each basin

(Table 2). Todemonstrate the effects of channel infiltration,

the model was calibrated with and without channel loss.

4. Results

Following calibration,WRF-Hydro, configured as NWM

v1.1 with channel loss, was run with both default uncali-

brated parameters (as a benchmark), calibrated parameters

without channel infiltration, and calibrated parameters with

channel infiltration for WY2009–16. WY2008 was used as

spinup, and 3 years of this 8-yr periodwere calibration years.

The results from this evaluation are presented herein.

a. Calibrated model performance and added value
of channel infiltration in WGEW

In WGEW, using rain gauge observations, calibration

eliminated water balance errors, largely by eliminating

spurious flashy peaks in the uncalibrated simulation, and

performed better when channel infiltration was included,

yielding slightly higher correlation coefficients (Fig. 6).

The resulting cumulative simulated streamflow for

WY2009–16 is less biased, demonstrating the added

value of calibration with channel loss for reducing water

balance errors. Adding channel loss reduced the negative

percent bias of themodeled versus observed coefficient of

variation (labeled as ‘‘cvdiff’’ in Fig. 6), suggesting that

the model with channel loss had less tendency to un-

derestimate the variance of the streamflow. To quantify

the amount of channel infiltration in the calibrated

model, we executed theNWMwith the same parameters

as the calibrated solution with channel infiltration, but

with channel infiltration disabled. Adding channel in-

filtration reduces the output at the outlet of WGEW by

21.73% over the model with channel infiltration dis-

abled (see figure in the online supplemental material),

indicating the fraction of water that becomes channel

infiltration. Table 5 shows that when WRF-Hydro is

calibrated with channel infiltration, the model KGE is

0.9431, and the correlation coefficient is 0.9442 for daily

streamflow during the calibration period. KGE was re-

duced to 0.8679 when the model was calibrated without

channel loss. These values show slightly less skill when

zero values of modeled and observed streamflow are

omitted from the analysis (see supplemental material).

As would be expected, model skill decreases in the eval-

uation period (WY2009–10 and WY2014–16), with a no-

tably lower KGE (0.4794 versus 0.6596) and higher bias

(40.85% versus 7.69%) when the model was calibrated

without channel loss, versus with channel loss (Table 5).

For hourly resolutions, the calibrated model results with

channel loss had a KGE of 0.83 (0.55) and a correlation

coefficient of 0.83 (0.80) for the calibration (evaluation)

periods (not shown here). For two sample hydrographs,

the bottom panels of Fig. 6 show that calibration improves

modeled hydrograph shape even though the model strug-

gles to represent specific hourly events. The calibrated

model without channel loss produces slightlymore intense

spurious runoff events than the model with loss.

TABLE 6. NWM WRF-Hydro skill scores for Noah-MP level 1

(0–10 cm) soil moisture simulations (compared to areal averages

and 5-cm Walnut Gulch soil moisture measurements) and simu-

lated ET fluxes (compared to flux tower ET at the Lucky Hills and

Kendall Grassland sites). Soil moisture (ET) skill scores are based

on hourly (daily) data.

Evaluation metric

Control

(with loss)

Calibration

(no loss)

Calibration

(with loss)

Soil moisture (basin average)

Percent bias 93.1831 105.2521 102.5220

Correlation coef 0.8587 0.8800 0.8543

KGE 0.0269 20.1427 20.0834

Lucky Hills 5-cm soil moisture

Percent bias 83.5882 94.4479 91.7655

Correlation coef 0.8466 0.8585 0.8352

KGE 0.0372 20.1649 20.0775

Kendall Grassland 5-cm soil moisture

Percent bias 64.7340 74.5087 71.5879

Correlation coef 0.8569 0.8656 0.8525

KGE 20.1439 20.4362 20.2611

Lucky Hills ET

Percent bias 210.822 21.5496 20.5983

Correlation coef 0.890 77 0.889 22 0.891 72

KGE 0.733 37 0.843 73 0.834 77

Kendall Grassland ET

Percent bias 215.464 26.6524 25.9558

Correlation coef 0.865 09 0.863 55 0.865 89

KGE 0.688 57 0.802 24 0.793 92
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b. Soil moisture and flux tower ET evaluation
in WGEW

To go beyond runoff only and consider the physical

process representation of WRF-Hydro, model soil mois-

ture and ET were evaluated against observations in

WGEW starting in WY2009 and ending in April 2015.

WGEW5-cm soil moisture observations were compared

to the area average of Noah-MP 0–10-cm soil moisture,

based on 20 soil moisture sites in WGEW including the

two AmeriFlux flux tower sites (i.e., Kendall Grassland

andLuckyHills). At these flux tower sites, observed hourly

soil moisture is compared to model soil moisture averages

from theNoah-MP grid point closest to the site and the two

points surrounding it in all directions (25 points total), to

minimize the impact of spurious model simulations for a

single grid point. Calibration increased the positive bias

of near-surface soil moisture, averaged throughout the

basin; however, including channel infiltration in the

calibration did not increase the soil moisture bias by as

much (Table 6). Calibrating without channel loss nom-

inally increased correlation coefficients for the basin

average and two sites, and adding channel infiltration

had little effect on the correlation coefficients after

calibration. Soil moisture from WY2014, which had a

wetter than average NAM season, is shown in Fig. 7.

This figure also indicates that the modeled soil moisture

solutions have a greater bias after calibration. We

computed KGE for model soil moisture, which also re-

flects the increased bias after calibration more than the

nominal gains in correlation coefficient. These results

show that the calibrated WRF-Hydro model (with and

without channel infiltration) increases the total amount

of water inside the upper soil layer by 4.8% (computed

basin average soil moisture in control vs calibration with

infiltration, with WGEW gauge forcing). This increase

in soil moisture in desert catchments is not observed in

the observation datasets. All modeled solutions have a

positive bias and slow dry-down during dry periods,

which might be from limiting the bottom drainage

scaling factor to eliminate deep groundwater baseflow.

Increased values of REFKDT from calibration in all the

basins likely also increased soil moisture, by increasing

infiltration. Analysis of 15-cm soil moisture data (not

FIG. 7. WY2014 NWMNoah-MP level 1 soil volumetric water content from the control (blue), calibrated (red),

and calibrated with channel loss (orange) compared to 5-cm observations (black) for (top left) LuckyHills and (top

right) Kendall Grassland. (bottom) Modeled ET from the control (blue), calibrated (red), and calibrated with

channel loss (orange) solutions for the same period and field sites are plotted. Flux tower ET measurements are

plotted in black.
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shown) at Kendall Grassland and Lucky Hills reveals

that soil moisture is less biased compared to observa-

tions, which may suggest that the Noah-MP 0–10-cm

layer might be better representative of deeper soils. We

acknowledge that representativeness errors in the soil

moisture observation sites may also be possible.

Benefits of calibration for the water balance can be

identified when considering observed daily ET fluxes from

the Kendall Grassland and Lucky Hills AmeriFlux flux

tower sites from WY2009 to December 2015 (Table 6),

compared to averages of corresponding model grid

points (same as for soil moisture). WRF-Hydro, without

calibration has a negative ET bias at Lucky Hills and

Kendall Grassland. This negative ET bias is consistent

with the uncalibrated model’s tendency to overestimate

streamflow, indicating that too little precipitation infiltrates

at the land surface (due to low REFKDT and DKSAT

values), forcing too much water to flow into the channel

network as overland flow. Calibration of WRF-Hydro

with channel infiltration, which eliminates the positive

FIG. 8. Example of control (blue), calibrated (red), and calibrated with channel loss (orange) NWM streamflow

for Walnut Gulch runoff gauge 1, where the model is forced with NCEP Stage IV precipitation. (top left) Accu-

mulated streamflow and (top right) model skill scores. Annual daily streamflow for (middle left) WY2011 and

(middle right) WY2014. Daily streamflow for (bottom left) September 2012 and (bottom right) July 2013.
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streamflow bias, further reduces the magnitude of the ET

bias at bothKendallGrassland andLuckyHills (compared

to the calibrated simulation without channel loss). This

implies that when WRF-Hydro is executed with accurate

forcing precipitation, calibration can improve the accuracy

of the simulated streamflow and reduce the ET bias,

despite increasing soil moisture bias, to improve the

water balance. Figure 7 shows that the high soil mois-

ture bias might be associated with too much ET during

the dry season, while ET is less during the wet season.

This tendency may be related to the soil moisture bias

discussed above.

c. Extension of calibration methods with NLDAS-2
and Stage IV precipitation

WRF-Hydro was calibrated with NLDAS-2 and Stage

IV precipitation in WGEW, and streamflow bias errors

were consistently reduced with calibration. However,

correlation coefficients demonstrate little improvement

outside the calibration period regardless of whether

channel loss is added (Fig. 8, Table 5). This is true with

both Stage IV and NLDAS-2 forcing. NLDAS-2 forced

results are shown in the supplemental material. Bias also

increases outside of the calibration period. Adding

channel infiltration does reduce coefficient of variation

errors and produces a realistic hydrograph, despite

timing errors. The fact that correlation coefficients and

bias for the same study area are degraded when Stage IV

or NLDAS-2 precipitation is used suggests that pre-

cipitation forcing may be a source of uncertainty for hy-

drologic models in this region. Table 7 implies that soil

moisture bias errors persist regardless of precipitation

forcing, but correlation coefficients remain high regard-

less of calibration. As with the gauge forcing, KGE values

seem to reflect bias errors. Model ET (at Kendall

Grassland and Lucky Hills) has a positive bias, which

increases with calibration with both datasets (Table 7),

implying that calibration might be compensating for

precipitation biases and the distribution of Stage IV

precipitation events (see discussion). Given the low run-

off/rainfall ratios common in the semiarid Southwest,

small errors in rainfall forcing typically result in large

errors in runoff predictions (Goodrich et al. 2012).

Calibrating WRF-Hydro without channel loss did

improve the KGE and bias metrics in the Babocomari

basin (regardless of forcing), but it did not yield a re-

alistic hydrologic response (see Fig. 9 for Stage IV re-

sults and supplemental material for NLDAS-2 results).

The same figure shows that calibrating with channel loss

did produce a realistic hydrologic response. Correlation

coefficients were low during the evaluation period

(WY2012–16), outside the calibration period (WY2009–

11), consistent with WGEW. Cumulative streamflow in

Fig. 9 shows that the later years (WY2014–16) were

wetter and had higher bias, suggesting that the hydro-

logic response may not be stationary (i.e., having con-

stant statistical properties over time; Wilks 2006) over

the calibration and evaluation periods. The poor hy-

drologic response in these later years may also be due to

errors in the Stage IV precipitation. Despite the limi-

tations of the NLDAS-2 and Stage IV precipitation

products in the Babocomari basin, the added value of

channel infiltration is clear, as calibrating the model

without channel loss cannot completely eliminate the

positive bias (Fig. 9, Table 5). The calibrated model

without channel loss produces excess flow during dry

periods, as the flashy runoff peaks are reduced by in-

creasing infiltration into the soil column, leading to ex-

cessive baseflow entering the stream network, which

TABLE 7. As in Table 6, using Stage IV or NLDAS-2 precipitation

forcing.

Evaluation metric

Control

(with loss)

Calibration

(no loss)

Calibration

(with loss)

Lucky Hills 5-cm soil moisture (Stage IV)

Percent bias 102.8033 113.5252 107.3987

Correlation coef 0.7752 0.7792 0.7241

KGE 20.1492 20.3142 20.1785

Kendall Grassland 5-cm soil moisture (Stage IV)

Percent bias 80.5597 91.1242 84.2638

Correlation coef 0.7870 0.7876 0.7515

KGE 20.2739 20.5128 20.2376

Lucky Hills ET (Stage IV)

Percent bias 16.0258 25.3312 25.5819

Correlation coef 0.8397 0.8394 0.8383

KGE 0.77291 0.68363 0.694

Kendall Grassland ET (Stage IV)

Percent bias 5.6164 14.8450 14.7850

Correlation coef 0.8367 0.8368 0.8376

KGE 0.8219 0.775 64 0.779 78

Lucky Hills 5-cm soil moisture (NLDAS-2)

Percent bias 102.6702 108.2907 107.4980

Correlation coef 0.7920 0.8010 0.7984

KGE 20.1740 20.2744 20.2563

Kendall Grassland 5-cm soil moisture (NLDAS-2)

Percent bias 77.9496 82.7476 82.0299

Correlation coef 0.8056 0.8108 0.8088

KGE 20.3001 20.4431 20.4138

Lucky Hills ET (NLDAS-2)

Percent bias 15.0899 20.2991 20.2678

Correlation coef 0.839 46 0.841 89 0.8429

KGE 0.779 65 0.738 55 0.739 66

Kendall Grassland ET (NLDAS-2)

Percent bias 2.3197 6.6863 6.6654

Correlation coef 0.805 36 0.804 22 0.803 67

KGE 0.780 21 0.785 66 0.784 89
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may be associated with a low coefficient of variation

bias (possibly implying more frequent flow with less

variance).

Calibrating WRF-Hydro with Stage IV forcing with

channel infiltration increases Noah-MP level 1 soil

moisture bias at three soil moisture sites operated

by the NOAA Hydrometeorology Testbed (HMT;

Table 8) and has little effect on model soil moisture

correlation coefficient (Fig. 10, Table 8). When channel

infiltration is disabled, calibration improves soil mois-

ture bias, but this is clearly at the expense of hydrologic

response (see above). Observed ET at the Audubon

Research Ranch AmeriFlux Site from WY2009 to

December 2011 is also compared to model ET, which

generally reflects the positive ET bias, also shown in

WGEW with Stage IV precipitation (Fig. 10; Table 8).

For deeper soil levels (20 and 50 cm), the model

underestimates soil moisture variability and has a

consistent high bias (see Fig. 11 and supplemental ma-

terial) at all three HMT sites. This high bias decreases

the soil moisture KGE. This is consistent with the soil

moisture bias in the upper layers, and it suggests that too

much water is entering the soil moisture column, to

compensate for the runoff biases in the NWM. The filling

FIG. 9. As in Fig. 8, but for the Babocomari River, with NCEP Stage IV forcing.
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of the soil columns is also likely due to the imposing of

no-flow conditions at the base of Noah-MP to shut off

the baseflow bucket model or due to other limits of

Noah-MP parameters.

5. Discussion

a. Calibration and precipitation forcing errors

Calibration with channel loss improves streamflow

skill in the Babocomari basin with NCEP Stage IV and

NLDAS-2 precipitation forcing, while calibrating the

NWM without channel loss cannot produce a realistic

hydrologic response in the same basin, unlike in

WGEW. To compensate for the lack of channel in-

filtration, the optimal value for the REFKDT parameter

increased in the Babocomari basin, to enable increased

soil infiltration before the water reached the channels

(Table 4). This relationship was less consistent in

WGEW. Despite this compensating effect, the model

without channel loss still had higher bias (Table 5),

particularly in the evaluation period. Thus, it appears

that parameter compensation can partially mask out

the biases from channel infiltration in WGEW; how-

ever, this is not possible in a larger basin with more

drainage area (and more area for water to enter the

channels that must eventually infiltrate) like the

Babocomari basin.

In the San Pedro basin, where streamflow in excess

of small base flows is primarily driven by warm

season convection, the calibrated model with NCEP

Stage IV and NLDAS-2 forcing is associated with lower

correlation coefficients, particularly during the evalua-

tion period. As Stage IV remains the more reliable

product (in the present study), this discussion centers on

assessing the errors associated with only Stage IV pre-

cipitation. Figure 12 demonstrates the likely cause of the

poor streamflow correlation, as observed precipitation

from a NOAA HMT gauge at Elgin, Arizona, some-

times poorly matches Stage IV precipitation, despite

the climatology of the two datasets being similar.

Figure 12 shows that the evaluation period was wetter

than the calibration period, which may partly explain

the high model bias after 2013 in the WGEW and the

Babocomari basins. Similar results from two other

Babocomari basin rain gauges are shown in supple-

mental material.

One possible reason for this correlation error is that

precipitation estimation by radar in the southwest

United States is affected by elevated terrain (causing

beam blockage and thus leading to the need for high

measurement elevations; e.g., Zamora et al. 2014).

Radar and available gauge observations are used to

derive NCEP Stage IV precipitation (Lin andMitchell

2005). Limitations in the quality of Stage IV data may

cause the reduced streamflow correlation coefficients

in the Babocomari River and WGEW. A detailed

analysis of differences in WGEW gauge and WSR-

88D rainfall data can be found in Morin et al.

(2003, 2005).

Regridded 4-km Stage IV and 1/88 NLDAS2 forcing

may also spatially spread precipitation over a larger

area, therefore buffering precipitation over the land-

scape and reducing localized high-intensity events. As

surface runoff only occurs when there is sufficient pre-

cipitation intensity to exceed the infiltration capacity

of the soil, spreading of precipitation could reduce

surface runoff that might otherwise occur over a

small area associated with locally heavier precipitation

TABLE 8. As in Table 7, for the Babocomari basin with NOAA

HMT soil moisture sites and flux tower observations from the

Audubon Research Ranch.

Evaluation metric

Control

(with loss)

Calibration

(no loss)

Calibration

(with loss)

Elgin, AZ 5-cm soil moisture (Stage IV)

Percent bias 234.8663 231.5843 241.3407

Correlation coef 0.8282 0.7906 0.8233

KGE 21.4053 21.3373 21.4761

Freeman Springs, AZ 5-cm soil moisture (Stage IV)

Percent bias 166.5594 162.2021 171.2363

Correlation coef 0.7728 0.7542 0.7725

KGE 20.6714 20.6198 20.7201

Whetstone, AZ 5-cm soil moisture (Stage IV)

Percent bias 24.1429 23.2152 25.5160

Correlation coef 0.8215 0.7773 0.8180

KGE 0.6905 0.6681 0.6740

Audubon Research Ranch ET (Stage IV)

Percent bias 16.9774 24.3583 20.9221

Correlation coef 0.8467 0.8409 0.8461

KGE 0.768 06 0.7044 0.739 94

Elgin, AZ 5-cm soil moisture (NLDAS-2)

Percent Bias 234.3116 213.9251 218.0668

Correlation Coef. 0.7956 0.7556 0.7666

KGE 21.4121 21.1544 21.2018

Freeman Springs, AZ 5-cm soil moisture (NLDAS-2)

Percent bias 160.3989 144.7427 147.7776

Correlation coef. 0.7617 0.7384 0.7434

KGE 20.6213 20.4568 20.4825

Whetstone, AZ 5-cm soil moisture (NLDAS-2)

Percent bias 29.6126 22.9163 24.3761

Correlation coef 0.7809 0.7366 0.7490

KGE 0.6200 0.6055 0.6280

Audubon Research Ranch ET (NLDAS-2)

Percent bias 15.5984 16.7333 15.6011

Correlation coef 0.822 93 0.814 11 0.817 04

KGE 0.7342 0.744 88 0.751 87
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intensity. This might explain why Stage IV forcing pro-

duces more precipitation and less streamflow over the

WGEW domain (Fig. 12). Spatial spreading of pre-

cipitation, and subsequent reduction of surface runoff,

may also be part of the cause of the high soil moisture

and ET bias.

b. Suggestions for future work

The addition of channel infiltration and subsequent

calibration of WRF-Hydro enables it to produce a more

realistic hydrologic response with reduced water bal-

ance errors in two basins in the southwest United States.

Calibration of WRF-Hydro in WGEW with gauge pre-

cipitation produces hourly streamflow with KGEs of

0.83. While this calibration does increase the positive

bias of near surface soil moisture in WGEW, it does

maintain the soil moisture correlation coefficients and

reduces ET bias. Stage IV or NLDAS-2 forcing, which is

derived by WSR-88D radar data and gauge precipita-

tion or model and satellite remote sensing products,

respectively, is subject to greater error and uncertainty

than gauge precipitation, which reduces the skill of the

model, irrespective of the channel infiltration function.

Given the limitations of the NWM with channel in-

filtration and its calibration routines described in this

work, we make several suggestions for future develop-

ment of the NWM and other distributed hydrologic

models used for forecasting.

Short-term solutions that may ameliorate the calibration

challenges for the NWM presented in our results include:

d New precipitation forcing datasets: NOAA is now

developing the high-resolution (;1 km) Analysis of

Record for Calibration (AORC) precipitation and

temperature dataset. While testing is still ongoing,

this dataset may add some value over the NLDAS-2

and NCEP Stage IV forcing products, and par-

tially ameliorate some soil moisture and ET bias,

described above.
d Additional calibration parameters and metrics: The in-

creased soil moisture bias, despite reduction in stream-

flow errors from calibration, may indicate potential

deficiencies in the Noah-MP structure, including some

FIG. 10. WY2014 Noah-MP level 1 soil volumetric water content from the control (blue), calibrated (red), and

calibrated with channel loss (orange) NWM compared to 5-cm observations (black) for (top left) Elgin, AZ, (top

right) Freeman Springs, AZ, and (bottom left) Whetstone, AZ. (bottom right) WY 2011 Modeled ET from the

control (blue), calibrated (red), and calibrated with channel loss (orange) solutions for the same period at the

AudubonResearchRanch flux tower site. Flux tower ETmeasurements are plotted in black in this panel. Note that

WY2014 ET was not available at this site.
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hard-coding of parameters (e.g., Mendoza et al. 2015).

Cuntz et al. (2016) showed that thewater partitioning of

Noah-MP was dependent upon several hard-coded

parameters. Efforts are now ongoing to update the

Noah-MP code to allow for more multicomponent

calibration and adjustment of these hard-coded param-

eters, to improve its physical process representation.

The limitations of the NWM and its calibra-

tion approach may also be further addressed with

more permanent based solutions in the long term,

including:

d Multivariable calibration: Addressing the soil mois-

ture biases may additionally require calibrating the

model to quantities other than streamflow, including

soil moisture. Basins around the United States with

soil moisture observations, including those main-

tained by NOAA HMT in Arizona and California

(Zamora et al. 2011), would be good candidates for

FIG. 11. WY 2014 NWM Noah-MP soil volumetric water content from the control (blue), calibrated (red), and

calibrated with channel loss (orange) compared to observations (black) for (top) Elgin, AZ, (middle) Freeman

Springs, AZ, and (bottom)Whetstone, AZ. (left) Noah-MP level 2 (10–40 cm) soil moisture compared to observed

20-cm soil moisture, and (right) Noah-MP level 3 (40–100 cm) soil moisture compared to observed 50-cm soil

moisture.
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this. Calibrating WRF-Hydro to soil moisture may

permit researchers to reduce soil moisture errors, thus

making the model’s representation of streamflow and

ET more physically consistent.
d Land and soil datasets: More detailed soil datasets

(e.g., SSURGO) could also be used to better constrain

soil parameters, as Figs. 3 and 5 indicate that a priori

NWM parameters likely underestimate soil hetero-

geneity compared to the SSURGO data shown in the

same figures. SSURGO data, which are based on local

soil surveys, were used to analyze output from the

Noah LSM in Zamora et al. (2014). Use of a SSURGO

dataset may also reduce the soil moisture errors and

biases shown earlier in this study.
d Alternatives to the baseflow bucket model: Soil mois-

ture errors in the Babocomari basin in deeper layers

may also have been caused by modifying the free

drainage scaling parameter to essentially a no-flow

boundary on the bottom of the Noah-MP LSM. The

current baseflow bucket model’s use of NHD catch-

ments keeps baseflow relatively local by returning it to

the same channel. This is not realistic in basins with

groundwater decoupled from surface water, so it was

disabled for this work. A WRF-Hydro configuration

that is coupled to a physically based groundwater

model, such as ParFlow (e.g., Maxwell et al. 2015)

could be a possible solution to this.
d Further enhancements to channel infiltration: An-

other area for future analysis is to make the channel

infiltration function more representative of physical

processes, like suction from dry soil (Smith and

Goodrich 2000; Smith et al. 2002). The infiltration

scheme implemented in theNWMfor the present study

only accounts for the impact of gravity. Soil suction

results in an increase of infiltration into the dry soil at

the start of a runoff event (Smith and Parlange 1978;

Parlange et al. 1982); however, its impact has not yet

been considered.Accounting for this process in a future

version of the model, may yield further improvements

to WRF-Hydro channel infiltration. Another potential

improvement would be if the channel infiltration

function were coupled back into the Noah-MP LSM,

FIG. 12. Elgin, AZ accumulated gauge precipitation (red) and NCEP Stage IV precipitation at the same point

(blue) (top left) for the calibration period (WY2009–11) and (top right) the evaluation period (WY2012–16).

(bottom left) WY2009–16 area average accumulatedWGEW gauge (red) and NCEP Stage IV (blue) precipitation

in WGEW. (bottom right) Accumulated NWM WRF-Hydro streamflow (for the same period) at the basin outlet

with WGEW forcing (orange) and Stage IV forcing (blue). Parameters in the accumulated streamflow plot are

optimized for gauge precipitation.
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permitting the model to resolve the effects of channel

infiltration on the surface fluxes in riparian areas, even

when water is not flowing. A saturated soil column

could also limit channel infiltration during wetter

periods.

6. Conclusions

The operational NWM is subject to systematic errors

in the southwest CONUS, in part due to lack of a rep-

resentation of ephemeral channel infiltration. These

errors reduce the skill of the NWM as an operational

tool in the southwest CONUS by the NWS. Addition

of a channel infiltration function and subsequent cali-

bration permits the model to produce a more realistic

hydrologic response in low-elevation regions that are

fed by convective rainfall. To fully realize the benefits of

this infiltration scheme, future work is needed to elimi-

nate the soil moisture biases of the Noah-MP LSM in

WRF-Hydro. This might be accomplished through di-

rect calibration to soil moisture, but may also require

changes to the Noah-MP structure, and modification or

elimination of theWRF-Hydro baseflow bucket scheme

to permit deep groundwater recharge in arid regions.

Spatial spreading of precipitation by the Stage IV pre-

cipitation product likely also contributes to soil moisture

and ET biases.

Analysis of modeled streamflow and associated forc-

ing precipitation data suggests that uncertainties asso-

ciated with national precipitation datasets will need to

be considered in future model calibration efforts. A

logical step for evaluating model forcing uncertainty is

to use the NOAAAORC forcing dataset for calibration

of the NWM. Heterogeneity of the soil column depth is

also not yet resolved in WRF-Hydro. These limitations

of WRF-Hydro could be addressed in subsequent re-

leases of the operational NWM. The observed im-

provements to modeled ET fluxes, when WRF-Hydro

was forced with gauge data and calibrated, suggests that

the model could potentially resolve surface fluxes in a

realistic manner. Calibration in the larger Babocomari

basin, clearly demonstrates the added value of channel

infiltration, as calibration without it yields an unrealistic

hydrologic response.
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